Part Number Hot Search : 
E2502H19 AK885 HT1621 04500 AD8258A 2412D CY7C15 SK331
Product Description
Full Text Search
 

To Download ST7568 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Sitronix
1. INTERODUCTION
circuits to drive liquid crystal, it is possible to make a display system with the fewest components.
ST7568
68 x 102 Dot Matrix LCD Controller/Driver
The ST7568 is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. It contains 102 segment and 68 common driver circuits. This chip is connected directly to a microprocessor, accepts. 4-line serial interface(SPI) or 8-bit parallel interface or IIC serial interface, display data can stores in an on-chip display data RAM of 68 x 102 x 2 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply
2. FEATURES
Single chip LCD controller/driver for 4 GRAY SCALE STN LCD 4-level (White, Light Gray, Dark Gray, Black) Gray Scale Display with PWM and FRC Methods DDRAM data [2n: 2n+1] Gray scale 00 White 01 Light gray 10 Dark gray 11 Dark
(Accessible column address=0,1,2...99,100,101)
Driver Output Circuits 102 segment outputs / 68 common outputs On-chip Display Data ram Capacity: 68X102X2=13,872 bits Generation of intermediate LCD bias voltages Oscillator requires no external components (external clock also possible) Voltage converter (x2, x3, x4, x5) Voltage regulator Voltage follower On-chip electronic contrast control function (128 steps)
Microprocessor Interface 8-bit parallel bi-directional interface with 6800-series or 8080-series 4-line SPI (serial peripheral interface) available (only write operation) IIC serial interface (only write operation)
External RESB (reset) pin Supply Voltage Range Digital (VDD -VSS): 1.8V to 3.3V Analog (VDD2-VSS2): 2.4 to 3.3V
On-chip Low Power Analog Circuit Generation of LCD supply voltage (externally Vout voltage supply is possible)
Temperature range: -30 to +85 degree
ST7568
6800 , 8080 , 4-Line Interface (without IIC interface) IIC interface
ST7568i
Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.
Ver 2.2
1/73
2008/01/04
ST7568
3. ST7568 Pad Arrangement (COG)
Chip Size: 10,220 um x 1000 um Bump Pitch: PAD NO 1 ~ 148 , 250 ~ 272 : 75.5 um (com/seg) PAD NO 248 ~ 249 : 93.5 um Bump Size: PAD NO 1 ~ 125 , 137 ~ 248 , 250 ~ 261 : 55(x) um x 60(y) um PAD NO 126 ~ 136 , 262 ~ 272 : 60(x)um x 55(y) um PAD NO 249 : 92(x) um x 60(y) um PAD NO 149 ~ 248 : 75 um (I/O) PAD NO 148 ~ 149 : 114 um
PAD NO 249 ~ 250 : 95.9 um
Bump Height: 17 um Chip Thickness: 635 um
60 15
6 6 30
60 6 15
75 15 30 (-4766,410) unit: um
30
75 6 15 30
Metal area Bump area
Mark
(4766,410) unit:um
125 126
1 272
Y A2024
(0,0)
X
136 137 248 249 250 RES 261
262
30 15 75 30 55 15 10 60 (-4763,-410) unit:um Bump Size of Top & Bottom 60 55 92 Bump Size of RES 10 60 (4763,-410) unit:um 60 30
30 15 75
60 Bump Size of Right & Left
15
unit: um
Ver 2.2
2/73
2008/01/04
ST7568
Pad Center Coordinates(68 Duty)
PAD NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PIN Name COM[44] COM[43] COM[42] COM[41] COM[40] COM[39] COM[38] COM[37] COM[36] COM[35] COM[34] COM[33] SEG[0] SEG[1] SEG[2] SEG[3] SEG[4] SEG[5] SEG[6] SEG[7] SEG[8] SEG[9] SEG[10] SEG[11] SEG[12] SEG[13] SEG[14] SEG[15] SEG[16] SEG[17] SEG[18] SEG[19] SEG[20] SEG[21] SEG[22] X 4681.0 4605.5 4530.0 4454.5 4379.0 4303.5 4228.0 4152.5 4077.0 4001.5 3926.0 3850.5 3775.0 3699.5 3624.0 3548.5 3473.0 3397.5 3322.0 3246.5 3171.0 3095.5 3020.0 2944.5 2869.0 2793.5 2718.0 2642.5 2567.0 2491.5 2416.0 2340.5 2265.0 2189.5 2114.0 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 PAD NO. 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 PIN Name SEG[23] SEG[24] SEG[25] SEG[26] SEG[27] SEG[28] SEG[29] SEG[30] SEG[31] SEG[32] SEG[33] SEG[34] SEG[35] SEG[36] SEG[37] SEG[38] SEG[39] SEG[40] SEG[41] SEG[42] SEG[43] SEG[44] SEG[45] SEG[46] SEG[47] SEG[48] SEG[49] SEG[50] SEG[51] SEG[52] SEG[53] SEG[54] SEG[55] SEG[56] SEG[57] X 2038.5 1963.0 1887.5 1812.0 1736.5 1661.0 1585.5 1510.0 1434.5 1359.0 1283.5 1208.0 1132.5 1057.0 981.5 906.0 830.5 755.0 679.5 604.0 528.5 453.0 377.5 302.0 226.5 151.0 75.5 0.0 -75.5 -151.0 -226.5 -302.0 -377.5 -453.0 -528.5 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0
Ver 2.2
3/73
2008/01/04
ST7568
PAD NO. 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 PIN Name SEG[58] SEG[59] SEG[60] SEG[61] SEG[62] SEG[63] SEG[64] SEG[65] SEG[66] SEG[67] SEG[68] SEG[69] SEG[70] SEG[71] SEG[72] SEG[73] SEG[74] SEG[75] SEG[76] SEG[77] SEG[78] SEG[79] SEG[80] SEG[81] SEG[82] SEG[83] SEG[84] SEG[85] SEG[86] SEG[87] SEG[88] SEG[89] SEG[90] SEG[91] SEG[92] SEG[93] X -604.0 -679.5 -755.0 -830.5 -906.0 -981.5 -1057.0 -1132.5 -1208.0 -1283.5 -1359.0 -1434.5 -1510.0 -1585.5 -1661.0 -1736.5 -1812.0 -1887.5 -1963.0 -2038.5 -2114.0 -2189.5 -2265.0 -2340.5 -2416.0 -2491.5 -2567.0 -2642.5 -2718.0 -2793.5 -2869.0 -2944.5 -3020.0 -3095.5 -3171.0 -3246.5 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 PAD NO. 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 PIN Name SEG[94] SEG[95] SEG[96] SEG[97] SEG[98] SEG[99] SEG[100] SEG[101] COMS1 COM[0] COM[1] COM[2] COM[3] COM[4] COM[5] COM[6] COM[7] COM[8] COM[9] COM[10] COM[11] COM[12] COM[13] COM[14] COM[15] COM[16] COM[17] COM[18] COM[19] COM[20] COM[21] COM[22] COM[23] COM[24] COM[25] COM[26] X -3322.0 -3397.5 -3473.0 -3548.5 -3624.0 -3699.5 -3775.0 -3850.5 -3926.0 -4001.5 -4077.0 -4152.5 -4228.0 -4303.5 -4379.0 -4454.5 -4530.0 -4605.5 -4681.0 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4694.5 -4619.0 -4543.5 -4468.0 -4392.5 -4317.0 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 381.5 306.0 230.5 155.0 79.5 4.0 -71.5 -147.0 -222.5 -298.0 -373.5 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0
Ver 2.2
4/73
2008/01/04
ST7568
PAD NO. 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 PIN Name COM[27] COM[28] COM[29] COM[30] COM[31] COM[32] T9 VDD VDD VDD VDD VDD VDD VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 X -4241.5 -4166.0 -4090.5 -4015.0 -3939.5 -3864.0 -3750.0 -3675.0 -3600.0 -3525.0 -3450.0 -3375.0 -3300.0 -3225.0 -3150.0 -3075.0 -3000.0 -2925.0 -2850.0 -2775.0 -2700.0 -2625.0 -2550.0 -2475.0 -2400.0 -2325.0 -2250.0 -2175.0 -2100.0 -2025.0 -1950.0 -1875.0 -1800.0 -1725.0 -1650.0 -1575.0 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 PAD NO. 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 PIN Name D2 D1 D1 D0 D0 VDD T0 T1 T2 T3 T4 T5 T6 T7 T8 VRS ERD ERD RWR RWR A0 A0 CS CS IMS VDD PS MODE T10 VDD OSC OSC V0 V0 V0 V0 X -1500.0 -1425.0 -1350.0 -1275.0 -1200.0 -1125.0 -1050.0 -975.0 -900.0 -825.0 -750.0 -675.0 -600.0 -525.0 -450.0 -375.0 -300.0 -225.0 -150.0 -75.0 0.0 75.0 150.0 225.0 300.0 375.0 450.0 525.0 600.0 675.0 750.0 825.0 900.0 975.0 1050.0 1125.0 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0
Ver 2.2
5/73
2008/01/04
ST7568
PAD NO. 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 PIN Name V1 V2 V3 V4 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS VSS VSS VSS VSS VSS VLCDIN VLCDIN VLCDIN VLCDIN VLCDIN VLCDIN VLCDOUT X 1200.0 1275.0 1350.0 1425.0 1500.0 1575.0 1650.0 1725.0 1800.0 1875.0 1950.0 2025.0 2100.0 2175.0 2250.0 2325.0 2400.0 2475.0 2550.0 2625.0 2700.0 2775.0 2850.0 2925.0 3000.0 3075.0 3150.0 3225.0 3300.0 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 PAD NO. 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 PIN Name VLCDOUT VLCDOUT VLCDOUT VLCDOUT VLCDOUT RES COMS2 COM[66] COM[65] COM[64] COM[63] COM[62] COM[61] COM[60] COM[59] COM[58] COM[57] COM[56] COM[55] COM[54] COM[53] COM[52] COM[51] COM[50] COM[49] COM[48] COM[47] COM[46] COM[45] X 3375.0 3450.0 3525.0 3600.0 3675.0 3768.5 3864.5 3940.0 4015.5 4091.0 4166.5 4242.0 4317.5 4393.0 4468.5 4544.0 4619.5 4695.0 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -373.5 -298.0 -222.5 -147.0 -71.5 4.0 79.5 155.0 230.5 306.0 381.5
Ver 2.2
6/73
2008/01/04
ST7568
Pad Center Coordinates(65 Duty)
PAD NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PIN Name COM[41] COM[40] COM[39] COM[38] COM[37] COM[36] COM[35] COM[34] COM[33] COM[32] Reserve Reserve SEG[0] SEG[1] SEG[2] SEG[3] SEG[4] SEG[5] SEG[6] SEG[7] SEG[8] SEG[9] SEG[10] SEG[11] SEG[12] SEG[13] SEG[14] SEG[15] SEG[16] SEG[17] SEG[18] SEG[19] SEG[20] SEG[21] SEG[22] X 4681.0 4605.5 4530.0 4454.5 4379.0 4303.5 4228.0 4152.5 4077.0 4001.5 3926.0 3850.5 3775.0 3699.5 3624.0 3548.5 3473.0 3397.5 3322.0 3246.5 3171.0 3095.5 3020.0 2944.5 2869.0 2793.5 2718.0 2642.5 2567.0 2491.5 2416.0 2340.5 2265.0 2189.5 2114.0 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 PAD NO. 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 PIN Name SEG[23] SEG[24] SEG[25] SEG[26] SEG[27] SEG[28] SEG[29] SEG[30] SEG[31] SEG[32] SEG[33] SEG[34] SEG[35] SEG[36] SEG[37] SEG[38] SEG[39] SEG[40] SEG[41] SEG[42] SEG[43] SEG[44] SEG[45] SEG[46] SEG[47] SEG[48] SEG[49] SEG[50] SEG[51] SEG[52] SEG[53] SEG[54] SEG[55] SEG[56] SEG[57] X 2038.5 1963.0 1887.5 1812.0 1736.5 1661.0 1585.5 1510.0 1434.5 1359.0 1283.5 1208.0 1132.5 1057.0 981.5 906.0 830.5 755.0 679.5 604.0 528.5 453.0 377.5 302.0 226.5 151.0 75.5 0.0 -75.5 -151.0 -226.5 -302.0 -377.5 -453.0 -528.5 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0
Ver 2.2
7/73
2008/01/04
ST7568
PAD NO. 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 PIN Name SEG[58] SEG[59] SEG[60] SEG[61] SEG[62] SEG[63] SEG[64] SEG[65] SEG[66] SEG[67] SEG[68] SEG[69] SEG[70] SEG[71] SEG[72] SEG[73] SEG[74] SEG[75] SEG[76] SEG[77] SEG[78] SEG[79] SEG[80] SEG[81] SEG[82] SEG[83] SEG[84] SEG[85] SEG[86] SEG[87] SEG[88] SEG[89] SEG[90] SEG[91] SEG[92] SEG[93] X -604.0 -679.5 -755.0 -830.5 -906.0 -981.5 -1057.0 -1132.5 -1208.0 -1283.5 -1359.0 -1434.5 -1510.0 -1585.5 -1661.0 -1736.5 -1812.0 -1887.5 -1963.0 -2038.5 -2114.0 -2189.5 -2265.0 -2340.5 -2416.0 -2491.5 -2567.0 -2642.5 -2718.0 -2793.5 -2869.0 -2944.5 -3020.0 -3095.5 -3171.0 -3246.5 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 PAD NO. 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 PIN Name SEG[94] SEG[95] SEG[96] SEG[97] SEG[98] SEG[99] SEG[100] SEG[101] COMS1 COM[0] COM[1] COM[2] COM[3] COM[4] COM[5] COM[6] COM[7] COM[8] COM[9] COM[10] COM[11] COM[12] COM[13] COM[14] COM[15] COM[16] COM[17] COM[18] COM[19] COM[20] COM[21] COM[22] COM[23] COM[24] COM[25] COM[26] X -3322.0 -3397.5 -3473.0 -3548.5 -3624.0 -3699.5 -3775.0 -3850.5 -3926.0 -4001.5 -4077.0 -4152.5 -4228.0 -4303.5 -4379.0 -4454.5 -4530.0 -4605.5 -4681.0 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4998.5 -4694.5 -4619.0 -4543.5 -4468.0 -4392.5 -4317.0 Y 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 389.0 381.5 306.0 230.5 155.0 79.5 4.0 -71.5 -147.0 -222.5 -298.0 -373.5 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0
Ver 2.2
8/73
2008/01/04
ST7568
PAD NO. 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 PIN Name COM[27] COM[28] COM[29] COM[30] COM[31] Reserve T9 VDD VDD VDD VDD VDD VDD VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 X -4241.5 -4166.0 -4090.5 -4015.0 -3939.5 -3864.0 -3750.0 -3675.0 -3600.0 -3525.0 -3450.0 -3375.0 -3300.0 -3225.0 -3150.0 -3075.0 -3000.0 -2925.0 -2850.0 -2775.0 -2700.0 -2625.0 -2550.0 -2475.0 -2400.0 -2325.0 -2250.0 -2175.0 -2100.0 -2025.0 -1950.0 -1875.0 -1800.0 -1725.0 -1650.0 -1575.0 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 PAD NO. 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 PIN Name D2 D1 D1 D0 D0 VDD T0 T1 T2 T3 T4 T5 T6 T7 T8 VRS ERD ERD RWR RWR A0 A0 CS CS IMS VDD PS MODE T10 VDD OSC OSC V0 V0 V0 V0 X -1500.0 -1425.0 -1350.0 -1275.0 -1200.0 -1125.0 -1050.0 -975.0 -900.0 -825.0 -750.0 -675.0 -600.0 -525.0 -450.0 -375.0 -300.0 -225.0 -150.0 -75.0 0.0 75.0 150.0 225.0 300.0 375.0 450.0 525.0 600.0 675.0 750.0 825.0 900.0 975.0 1050.0 1125.0 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0
Ver 2.2
9/73
2008/01/04
ST7568
PAD NO. 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 PIN Name V1 V2 V3 V4 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS2 VSS VSS VSS VSS VSS VSS VLCDIN VLCDIN VLCDIN VLCDIN VLCDIN VLCDIN VLCDOUT X 1200.0 1275.0 1350.0 1425.0 1500.0 1575.0 1650.0 1725.0 1800.0 1875.0 1950.0 2025.0 2100.0 2175.0 2250.0 2325.0 2400.0 2475.0 2550.0 2625.0 2700.0 2775.0 2850.0 2925.0 3000.0 3075.0 3150.0 3225.0 3300.0 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 PAD NO. 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 PIN Name VLCDOUT VLCDOUT VLCDOUT VLCDOUT VLCDOUT RES COMS2 COM[63] COM[62] COM[61] COM[60] COM[59] COM[58] COM[57] COM[56] COM[55] COM[54] COM[53] COM[52] COM[51] COM[50] COM[49] COM[48] COM[47] COM[46] COM[45] COM[44] COM[43] COM[42] X 3375.0 3450.0 3525.0 3600.0 3675.0 3768.5 3864.5 3940.0 4015.5 4091.0 4166.5 4242.0 4317.5 4393.0 4468.5 4544.0 4619.5 4695.0 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 4998.5 Y -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -389.0 -373.5 -298.0 -222.5 -147.0 -71.5 4.0 79.5 155.0 230.5 306.0 381.5
Ver 2.2
10/73
2008/01/04
ST7568
4. BLOCK DIAGRAM
SEG0 TO SEG101
COM0 TO COM67
SEGMENT DRIVERS BIAS VOLTAGE GENERATOR DATA LATCHES
COMMON DRIVERS
COMMON OUTPUT CONTROLLER CIRCUIT
FRC/PWM FUNCTION CIRCUIT VLCD GENERATOR DISPLAY DATA RAM (DDRAM) [68X102X2] RESET
/RES OSC
OSCILLATOR TIMING GENERATOR DISPLAY ADDRESS COUNTER
VLCDIN VLCDOUT
ADDRESS COUNTER
VDD2 VDD Vss1 Vss2 PS IMS
DATA REGISTER BUS HOLDER
INSTRUCTION REGISTER INSTRUCTION DECODER
MPU INTERFACE(PARALLEL & SERIAL)
DB7(SCL) WR(R/W)
RD(E) A0 /CS /RES
Fig.1 block diagram
DB0 DB1 DB2 DB3 DB4 DB5 DB6(SI)
Ver 2.2
11/73
2008/01/04
ST7568
5. PINNING DESCRIPTIONS
Pin Name
Lcd driver outputs LCD segment driver outputs This display data and the M signal control the output voltage of segment driver. Segment drover output voltage Display data M (Internal) Normal display Reverse display SEG0 to SEG101
I/O
Description
No. of Pins
O
H
H
VLCD VSS V2 V3 VSS
V2 V3 VLCD VSS VSS
102
H L L H L L Power save mode
COM0 to COM66
O
LCD column driver outputs This internal scanning data and M signal control the output voltage of common driver. Common drover output voltage Display data M(Internal) Normal display Reverse display H H VSS H L VLCD L H V1 L L V4 Power save mode VSS Common output for the icons The output signals of two pins are same. When not used, this pin should be left open.
67
COMS
O
2
MICROPROCESSOR INTERFACE Microprocessor interface select input pin P/S= " H ": parallel data input. P/S= " L ": serial data input. (4-line serial or IIC serial interface) When 4-line serial interface is applied, D0 to D5 are fixed to " H ". RD (E) and WR(R/W) are fixed to " H ". Input mode select P/S IMS State "H" " H " 6800-series parallel MPU interface "H" " L " 8080-series parallel MPU interface "L" " H " 4 Pin-SPI MPU interface "L" " L " IIC serial interface Chip select input pins Data/instruction I/O is enabled only when CSB is " L ". When chip select is non-active, DB0 to DB7 is high impedance. There is no CSB pin in two line interface, so this pin can fix to " H" or "L". Reset input pin When RESET is " L ", initialization is executed. It determines whether the data bits are data or a command. A0=" H ": Indicates that D0 to D7 are display data. A0=" L ": Indicates that D0 to D7 are control data. There is no A0 pin in two line interface, so this pin can fix to " H" or "L"
P/S
I
1
IMS
I
1
CSB
I
2
RESB
I
1
A0
I
2
Ver 2.2
12/73
2008/01/04
ST7568
Read/Write execution control pin IMS H /WR(R/W) I L 8080-series /WR MPU type 6800-series /WR(R/W) R/W Description Read/Write control input pin R/W=" H ": read R/W=" L": write Write enable clock input pin The data on D0 to D7 are latched at the rising edge of the /WR signal
2
When in the serial interface must fixed to " H ". Read/Write execution control pin IMS MPU Type /RD (E) Description Read/Write control input pin R/W=" H ": When E is " H ", D0 to D7 are in an output status. R/W=" L ": The data on D0 to D7 are latched at the falling edge of the E signal. Read enable clock input pin When /RD is " L ", D0 to D7 are in an output status.
/RD (E)
I
H
6800-series
E
2
L
8080-series
/RD
When in the serial interface must fixed to " H ". When the Parallel interface is selected (P/S=" H " ): 8-bit interface 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active, D0 to D7 is high impedance. When the serial interface is selected (P/S=" L " & IMS="H"):4-line D7: serial input clock (SCL) D6: serial input data (SI) D5, D4, D3, D2, D1, D0: must fix to "H".. When chip select is not active, D0 to D7 is high impedance. When the IIC serial interface is selected (P/S=" L " & IMS="L") D0 is SA0 D1 is SA1 D2,D3 are SDA_IN D4,D5,D6 are SDA_OUT D7 is SCL SA1, SA0: Is slave address (SA) bit1, 0, must fix to "H" or "L" SDA_IN: serial input data 2 SDA_OUT: serial data acknowledge output for the I C interface. SCL: serial clock input By connecting SDA_OUT to SDA_IN externally, the SDA line becomes fully 2-line interface compatible. Having the acknowledge output separated from the serial data line is advantageous in chip on glass (COG) applications. In COG application where the track resistance from the SDA_OUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance. It is possible the during the acknowledge cycle the ST7568 will not be able to create a valid logic 0 level. By splitting the SDA_IN input from the SDA_OUT output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDA_OUT pad to the system SDA line to guarantee a valid low level. All Pad of SDA_IN, SDA_OUT must be connected together (SDA)
D5 to D0 D6 (SI) D7 (SCL)
I/O
16
Ver 2.2
13/73
2008/01/04
ST7568
MODE LCD DRIVER SUPPLY Oscillator When the on-chip oscillator is used, this input must be connected to VDD. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock. I Use this pin can select 65 duty or 68 duty mode When MODE=`L': select 65 duty (64 com + coms) When MODE=`H': select 68 duty (67 com + coms) 1
OSC
I
2
Power Supply Pins Power VSS1 Supply Power VSS2 Supply Power VDD Supply Power VDD2 Supply Power VLCDOUT Supply Power VLCDIN Supply Power V1, V2, V3, V4 Supply Power VRS Supply Test Pin To test used. Test0~Test8 must floating Test9 could be connected out for monitor the VLCD(V0) voltage Test10 must connect to VDD Digital Ground. The 2 supply rails VSS1 and VSS2 must be connected together. Analog Ground. The 2 supply rails VSS1 and VSS2 must be connected together. Digital Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. If Digital Option pin is high, must be this level Analog Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. If the internal voltage generator is used, the V LCDIN & VLCDOUT must be connected together and series one capacitor to VSS2. If an external supply is used this pin must be left open. If the internal voltage generator is used, the V LCDIN & VLCDOUT must be connected together. An external supply voltage can be supplied using the VLCDIN pad. This pad is for external multiple voltage input. In this case, VLCDOUT has to be left open, This is a multi-level power supply for the liquid crystal. VLCDIN V0 V1V2V3V4VSS Monitor Voltage Regulator level, must be left open. 1 6
12
9
12
6
6
8
Test0~Test10
T
11
Ver 2.2
14/73
2008/01/04
ST7568
Recommend ITO Resistance Value PIN Name P/S, IMS, MODE, OSC, Test9, Test10 Test[0:8] VDD, VDD2, VSS1, VSS2, VRS, VLCD CSB, E, R/W, A0, D0...D7 V0, V1 , V2 , V3 , V4 RESB ITO Resistance No Limitation Floating <100 <1K <500 <10K
Ver 2.2
15/73
2008/01/04
ST7568
6. FUNCTIONS DESCRIPTION
MICROPROCESSOR INTERFACE Chip Select Input There is CSB pin for chip selection. The ST7568 can interface with an MPU when CSB is "L". When CSB is "H", these pins are set to any other combination, A0, /RD(E), and /WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of 4-line serial interface, the internal shift register and the counter are reset. In case of IIC serial interface CSB is a no use pin which must be fixed to high or low Parallel / Serial Interface ST7568 has four types of interface with an MPU, which are two serial and two parallel interfaces. This parallel or serial interface is determined by P/S pin as shown in table 1. Table 1. Parallel/Serial Interface Mode Type P/S IMS CSB Interface mode H 6800-series MPU interface Parallel H CSB L 8080-series MPU interface H CSB 4-pin SPI interface Serial L L No use IIC serial interface Parallel Interface (P/S = "H") The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by IMS as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in table 3. Table 2. Microprocessor Selection for Parallel Interface IMS CSB A0 /RD (E) /WR (R/W) DB0 to DB7 MPU bus H CSB A0 E R/W DB0 to DB7 6800-series L CSB A0 /RD /WR DB0 to DB7 8080-series Table 3. Parallel Data Transfer Common 6800-series 8080-series Description E R/W /RD /WR RS (/RD) (/WR) (E) (R/W) H H H L H Display data read out H H L H L Display data write L H H L H Register status read L H L H L Writes to internal register (instruction) NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, /WR(R/W) as in case of 6800-series mode. Serial Interface (P/S=" L ") Serial Mode 4-line SPI interface IIC serial interface P/S L L IMS H L CSB CSB No Used A0 A0 No Used /RD (E) No Used No Used /WR (R/W) No Used No Used
IMS=" L ", P/S=" H ": 4-line SPI interface When the ST7568 is active (CSB="L"), serial data (D7) and serial clock (D6) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (A0) Pin, based on the setting of P/S. When the A0 pin is used (IMS = "H"), data is display data when A0 is high, and command data when A0 is low. If messages on the data pin are data rather than command, MCU should send Data direction to the SI data signal pin,. And the DDRAM column address pointer will be increased by one pixel data (2 bits) automatically. The next bytes after the display data string are handled as command data.
/CB SI SCL A0 Figure 2. 4-line SPI Timing
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6
Ver 2.2
16/73
2008/01/04
ST7568
IMS=" L ", P/S=" L ":I C Interface 2 2 The I C interface send RAM data and executes the commands sent via the I C Interface. It could send data it to the RAM. 2 The I C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy. BIT TRANSFER One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.3. START AND STOP CONDITIONS Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.4. SYSTEM CONFIGURATION The system configuration is illustrated in Fig.5. * Transmitter: the device, which sends the data to the bus * Master: the device, which initiates a transfer, generates clock signals and terminates a transfer * Slave: the device addressed by a master * Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message * Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted * Synchronization: procedure to synchronize the clock signals of two or more devices. ACKNOWLEDGE Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a 2 STOP condition. Acknowledgement on the I C Interface is illustrated in Fig.6.
2
Ver 2.2
17/73
2008/01/04
ST7568
SDA SCL
data line stable; data valid change of data allowed
Fig .3 Bit transfer
SDA SCL S
START con dition
Fig .4 Definition of START and STOP conditions
P
STOP con dition
MASTER TRANSMITTER/ RECEIVER
SLAVE RECEIVER (1) 0111100
SLAVE RECEIVER (2) 0111101
SLAVE RECEIVER (3) 0111110
SLAVE RECEIVER (4) 0111111
SDA SCL
Fig .5 System configuration
DATA OUTPUT BY TRANSMITTER DATA OUTPUT BY RECEIVER SCL FROM MASTER 1 2
not acknowledge acknowledge 8 9 clock pulse for acknowledge ment
S
START condition
Fig .6 Acknowledgement on the 2-line Interface
Ver 2.2
18/73
2008/01/04
ST7568
I C Interface protocol The ST7568 supports command, data write addressed slaves on the bus. 2 Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100,0111101, 0111110 and 0111111) are reserved for the ST7568. The least significant bit of the slave address is set by connecting the input SA0 and SA1 to either logic 0 (or logic 1 (VDD). 2 The I C Interface protocol is illustrated in Fig.7. The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address. 2 All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and A0, plus a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7568i device. If the A0 bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received 2 commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I C INTERFACE-bus master issues a STOP condition (P).If the R/W bit is set to logic 1 the chip will output data immediately after the slave address if the A0 bit, which was sent during the last write access, is set to logic 0. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master.
2 2
Write mode
acknowledgement from ST7568i
S A 1 S A 0
acknowledgement from ST7568i
acknowledgement from ST7568i
acknowledgement from ST7568i
acknowledgement from ST7568i
S01111 slave address
0A1
R/W
A 0
control byte
A 2n>=0bytes command word
data byte
A0
A 0
control byte
A
data byte
AP
1 byte Co
n>=0bytes MSB.......................LSB
Co
01111
S A 1
S A 0
R / W
Co
A 0
000000A control byte
DDDDDDDD 76543210
A
slave address
data byte
Fig .7 2-line Interface protocol Last control byte to be sent. Only a stream of data bytes is allowed to follow. 0 Co 1 This stream may only be terminated by s STOP or RE-START condition. Another control byte will follow the data byte unless a STOP or RE-START condition is received.
Ver 2.2
19/73
2008/01/04
ST7568
Busy Flag The Busy Flag indicates whether the ST7568 is operating or not. When D7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance. Data Transfer The ST7568 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 8. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 9. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.
MPU signal A0 /WR D0 to D7 Internal signals /WR BUS HOLDER COLUMN ADDRESS N D(N) N D(N+1) N+1 D(N+2) N+2 D(N+3) N+3 N D(N) D(N+1) D(N+2) D(N+3)
Figure 8. Write Timing
MPU signal A0 /W R /RD D0 to D7 Internal signals /W R /RD BUS HOLDER COLUMN ADDRESS N N D(N) D(N) D(N+1) D(N+1) D(N+2) D(N+2) N Dummy D(N) D(N+1)
Ver 2.2
Figure 9.Read Timing 20/73
2008/01/04
ST7568
DISPLAY DATA RAM (DDRAM) The ST7568 contains a 68X102X2 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 68(8 pageX8 bit +1 pageX3 bit +1 pageX1 bit) X102 X2. There is a direct correspondence between X-address and column output number. It is 68-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines (0~63 COM) and 8th page with three line (D0 ~D2)(64~ 66 COM) and 9th page with a single line (D0 only)(67 row--COMS (ICON). Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Page Address Circuit This circuit is for providing a Page Address to Display Data RAM shown in figure 6. It incorporates 4-bit Page Address register changed by only the "Set Page" instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid. Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in figure 10. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 102-bit RAM data to the display data latch circuit. When icon is selected by setting icon page address, display data of icons are not scrolled because the MPU cannot access Line Address of icons. Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM as shown in figure11. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. Register MX and MY selection instruction makes it possible to invert the relationship between the Column Address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing MX select instruction. Refer to the following figure 12. SEG Output SEG Output MX SEG0 SEG101 "0" seg0 a Segment Address a seg101 "1" seg101 Segment Address seg0 Com Output SEG Output MY Com0 Com66 Coms "0" com0 a Common Address a com66 Coms "1" com66 Common Address com0 Coms Status Normal Reverse COM Scan Direction 1/65 DUTY 1/68 DUTY COM0 a COM63 COM0 a COM66 COM63 a COM0 COM66 a COM0
Duty 1/68 1/65
MY 0 1 0 1
Com [0:31]
Com [0:31] Com [63:32]
Common output pins Com [32:34] Com [35:66] Com [0:66] Com [66:0] Reverse Com [32:63] Reverse Com [31:0]
Coms Coms Coms Coms Coms
Ver 2.2
21/73
2008/01/04
ST7568
SEG output SEG 0 SEG 1 SEG 2 SEG 3 ... ... ... ... ... SEG 98 62H SEG 99 63H SEG 100 64H SEG 101 65H
Column 00H 01H 02H 03H address [X6:X0] Internal column 00 01 02 03 04 05 06 07 address HEX HEX HEX HEX HEX HEX HEX HEX Display data 1 1 1 0 0 0 0 1 (MX=0) LCD panel display
7C 7D 7E 7F 80 81 82 83 HEX HEX HEX HEX HEX HEX HEX HEX 1 0 1 1 0 0 0 1
Display data (MX=1) LCD panel display ADDRESSING
0
1
0
0
1
1
1
0
... ...
0
1
0
0
1
0
1
1
Figure10.The Relationship between the Column Address and The Segment Outputs
Data is downloaded in bytes into the RAM matrix of ST7568 as indicated in Figs.11, 12,13. The display RAM has a matrix of 68 by 102 x 2 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to 9 (1001). Addresses outside these ranges are not allowed. In vertical addressing mode (V=1) the Y address increments after each byte (see Fig.13). After the last Y address (Y = 9) Y wraps around to 0 and X increments to address the next column. In horizontal addressing mode (V=0) the X address increments after each byte (see Fig.12). After the last X address (X = 101) X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101, Y = 9) the address pointers wrap around to address (X = 0, Y =0) Data structure LSB
D0
D7
MSB LSB MSB 1 bit 0 X-address 101
0 1 2 3 4 5 6 7 8 9
Fig.11 RAM format, addressing
Ver 2.2
22/73
2008/01/04
Y-address
ST7568
0 1 2 3 4 5 6 7 8 0
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 X-address
917 101
0 1 2 3 4 5 6 7 8 9
Fig.12 Sequence of writing data bytes into RAM with vertical addressing (V=1)
012 102103104 204205206 306307308 408409410 510511512 612613614 714715716 816817818 0 X-address
917 101
0 1 2 3 4 5 6 7 8 9
Fig.13 sequence of writing data bytes into RAM with horizontal addressing (V=0)
Ver 2.2
23/73
Y-address
Y-address
2008/01/04
ST7568
Page Address Dat D3 D2 D1 D0 a D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 00 01 02 03 04 05 06 07 08 Line Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
When the common output is normal
COM Output COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 ICON(COMS)
0
0
0
0
Page 0
0
0
0
1
Page 1
0
0
1
0
Page 2
0
0
1
1
Page 3
0
1
0
0
Page 4
0
1
0
1
Page 5
0
1
1
0
Page 6
0
1
1
1
Page 7
1
0
0
0
Page 8 D0 5D 5E 5F 60 61 62 63 64 65 0 MX Column address
S100
S101
Figure 14. Display Data RAM Map (65 COM)
Ver 2.2
24/73
LCD Out
S93
S94
S95
S96
S97
S98
S99
S0
S1
S2
S3
S4
S5
S6
S7
S8
D0
5D
5E
5F
65
64
63
62
61
60
08
07
06
05
04
03
02
01
00
Regardless of the display start line address, 1/65duty => 64th line,
1
2008/01/04
ST7568
Page Address Dat D3 D2 D1 D0 a D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D0 00 01 02 03 04 05 06 07 08 Line Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H D0 5D 5E 5F 60 61 62 63 64 65
When the common output is normal
COM Output COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 ICON(COMS)
0
0
0
0
Page 0
0
0
0
1
Page 1
0
0
1
0
Page 2
0
0
1
1
Page 3
0
1
0
0
Page 4
0
1
0
1
Page 5
0
1
1
0
Page 6
0
1
1
1
Page 7
1 1
0 0
0 0
0 1
Page 8 Page 9
S100
S101
Display Data RAM Map (68 COM)
Ver 2.2
25/73
LCD Out
S93
S94
S95
S96
S97
S98
S99
S0
S1
S2
S3
S4
S5
S6
S7
S8
MX Column address
D0
5D
5E
5F
65
64
63
62
61
60
08
07
06
05
04
03
02
01
00
Regardless of the display start line address, 1/68duty => 67th line,
1
0
2008/01/04
ST7568
LCD DISPLAY CIRCUITS FRC (Frame Rate Control) and PWM (Pulse Width Modulation) Function Circuit The ST7568 incorporates an FRC function and a PWM function circuit to display a 4-level gray scale. The FRC function and PWM utilize liquid crystal characteristics whose transmittance is changed by an effective value of applied voltage. The ST7568 provides four 4-bit palette-registers to assign the desired gray level. The instructions and the RESB Pin set these registers. -Gray Scale Table of 4 FRC (Frame Rate Control) Gray scale level White Light gray Dark gray Black MSB (D7 TO D4) 2nd FR (FR2) 4th FR (FR4) 2nd FR (FR2) 4th FR (FR4) 2nd FR (FR2) 4th FR (FR4) 2nd FR (FR2) 4th FR (FR4) LSB (D3 TO D0) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3)
-Gray Scale Table of 3 FRC (Frame Rate Control) Gray scale level White Light gray Dark gray Black MSB (D7 TO D4) 2nd FR (FR2) XXXX 2nd FR (FR2) XXXX 2nd FR (FR2) XXXX 2nd FR (FR2) XXXX LSB (D3 TO D0) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3)
-Gray Scale Table of 15 PWM (Pulse Width Modulation) Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 4-bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 PWM (on width) 0(0/15) 1/15 2/15 3/15 4/15 5/15 6/15 7/15 8/15 9/15 10/15 11/15 12/15 13/15 14/15 1(15/15) Note Brighter
Darker
Ver 2.2
26/73
2008/01/04
ST7568
-Gray Scale Table of 12 PWM (Pulse Width Modulation) Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 4-bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 PWM (on width) 0(0/12) 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 1(12/12) 0/12 0/12 0/12 Note Brighter
Darker This area is selected to OFF level (0/12 level)
-Gray Scale Table of 9 PWM (Pulse Width Modulation) Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 4-bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 PWM (on width) 0(0/9) 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1(9/9) 0/9 0/9 0/9 0/9 0/9 0/9 Note Brighter
Darker
This area is selected to OFF level (0/9 level)
Ver 2.2
27/73
2008/01/04
ST7568
Booster Efficiency By Booster Stages (2X, 3X, 4X, 5X) and Booster Efficiency (Level1~4) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than level1), The Boost Efficiency is better than lower level, and it just need few more power consumption current. It could be applied to each multiple voltage Condition. When the LCD Panel loading is heavier. Then the Performance of Booster will be not in a good working condition. We could set the BE level to be higher. We do not need to change to higher Booster Stage, and just need few more current. The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output condition. We could see the Boost Stage Command as a large scale operation, and see the Booster Efficiency Command as a small scale operation. These commands are very convenient for using
Level1 Level2 Vout Voltage Level3 Level4
5X boost
Loading
Level1 VSS Current Level2 Level3 Level4
5X Current
Loading
Ver 2.2
28/73
2008/01/04
ST7568
Oscillator The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD. An external clock signal, if used, is connected to this input. Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 102-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make a AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 15.
64 65 1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64 65 1 2 3 4 5
CL(Internal) FR(Internal) M(Internal)
VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS
COM0
COM1
SEGn
Figure 15 2-frame AC Driving Waveform (Duty Ratio: 1/65)
64 65 1 2 3 4 5 6 7 8 9 10 11 12 56 57 58 59 60 61 62 63 64 65 1 2 3 4
CL(Internal)
FR(Internal) M(Internal)
VLCD V1 V2 V3 V4 Vss VLCD V1 V2 V3 V4 Vss VLCD V1 V2 V3 V4 Vss
COM0
COM1
SEGn
Figure 16. N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/65)
Ver 2.2
29/73
2008/01/04
ST7568
LCD DRIVER CIRCUIT 68-channel common drivers and 102-channel segment drivers configure this driver circuit. This LCD panel driver voltage depends on the combination of display data and M signal.
M
COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7
COM0
COM1
COM8 COM9 COM10 COM11 COM12 COM13 COM14
COM2
SEG0
SEG 0 1 2 3 4
SEG1
COM0 to SET0
COM0 to SET1
VDD VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V1 V2 V3 V4 VSS VLCD V4 V3 V2 V1 VSS -V1 -V2 -V3 -V4 -VLCD VL2 V1 V2 V3 V4 VSS -V1 -V2 -V3 -V4 -VLCD
Fig.17 Typical LCD driver waveforms
Ver 2.2
30/73
2008/01/04
ST7568
Partial Display on LCD The ST7568 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages.
-COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23
Figure 18.Reference Example for Partial Display
-COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23
Figure 19.Partial Display (Partial Display Duty=16,initial COM0=0)
Ver 2.2
31/73
2008/01/04
ST7568
-COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23
Figure 20.Moving Display (Partial Display Duty=16,Initial COM0=8)
Ver 2.2
32/73
2008/01/04
ST7568
7. RESET CIRCUIT
Setting RESB to "L" or Reset instruction can initialize internal function. When RESB becomes "L", following procedure is occurred. Page address: 0 Column address: 0 Read-modify-write: OFF Display ON / OFF: OFF Initial display line: 0 (first) Initial COM0 register: 0 (COM0) Reverse display ON / OFF: OFF (normal) N-line inversion register: 0 (disable) Entire Display ON/OFF: OFF ICON Control Register ON/OFF: OFF (ICON disable) COM Scan Direction MY: 0 SEG Select Direction MX: 0 Oscillator: OFF Power Save Mode: Release Display Data Length register: 0 (for SPI mode) White mode set: OFF White palette register (WG3, WG2, WG1, WG0) = (0, 0, 0, 0) Light gray mode set: OFF Light gray palette register (LG3, LG2, LG1, LG0) = (0, 0, 0, 0) Dark gray mode set: OFF Dark gray palette register (DG3, DG2, DG1, DG0) = (1, 1, 1, 1) Black mode set: OFF Black palette register (BG3, BG2, BG1, BG0) = (1, 1, 1, 1) FRC, PWM mode: 4FRC, 9PWM Power down mode (PD = 1) Horizontal addressing (V = 0) normal instruction set (H = 0) Display blank (E = D = 0) Address counter X [6:0] = 0, Y [2:0] = 0 Bias system (BS [2:0] = 0) VLCD is equal to 0; the HV generator is switched off (VOP [6:0] = 0) After power-on, RAM data are undefined While RESB is "L" or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at DB6. After DB6 becomes "L", any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used.
Ver 2.2
33/73
2008/01/04
ST7568
8. INSTRUCTION TABLE
INSTRUCTION H=0 or 1 NOP Reset Function set Ext. display control Window size for Partial screen Display part Read status byte Read data Write data A0
WR (R/W)
D7 0 0 0 0 0 0 PD D7 D7
D6 0 0 0 0 0 0 RST D6 D6
D5 0 0 1 1 1 1
COMMAND BYTE D4 D3 D2 0 0 0 0 1 1 D D4 D4 0 0 0 1 0 1 E D3 D3 0 0 PD MX 0 DP2 1 D2 D2
D1 0 1 V MY 0 DP1 0 D1 D1
D0 0 1 H PS WS DP0 1 D0 D0
DESCRIPTION
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0
BUSY D5 D5
No operation Internal reset Power-down; entry mode; Extended instruction control Mirror X, Mirror Y, partial screen mode Partial screen size 0:8 row, 1:16 row Sets display part for partial screen mode Read status byte Read data from RAM Write data to RAM
* Reset instruction could not applied on IIC serial interface
Ver 2.2
34/73
2008/01/04
ST7568
INSTRUCTION H=0 Set VLCD range END Read/modify/write Display control Set Y address of RAM Start line set Set X address of RAM H=1 Booster Efficiency Booster stages Release N-line inversion Set N-line inversion A0
WR (R/W)
D7 0 0 0 0 0 0 1
D6 0 0 0 0 0 1 X6 0 0 0 0 X 0 0 0 FR2 0 0 WB2 0 WD2 0 LB2 0 LD2 0 DB2 0 DD2 0 BB2 0 DB2 1 VOP6
D5 0 0 0 0 0 S5 X5 0 0 0 0 X 0 0 0 FR1 0 0 WB1 0 WD1 0 LB1 0 LD1 0 DB1 0 DD1 0 BB1 0 DB1 X VOP5
COMMAND BYTE D4 D3 D2 0 0 0 0 1 S4 X4 0 0 0 0 N4 0 1 0 FR0 1 1 WB0 1 WD0 1 LB0 1 LD0 1 DB0 1 DD0 1 BB0 0 DB0 X VOP4 0 0 0 1 Y3 S3 X3 0 1 1 1 N3 1 0 1 X 0 1 WA3 1 WC3 1 LA3 1 LC3 1 DA3 1 DC3 1 BA3 1 BC3 X VOP3 1 1 1 D Y2 S2 X2 1 0 1 1 N2 1 0 1 FRC BS2 0 WA2 0 WC2 0 LA2 0 LC2 1 DA2 1 DC2 1 BA2 1 BC2 X VOP2
D1 0 1 1 0 Y1 S1 X1 BE1 PC1 0
D0 PRS 0 1 E Y0 S0 X0 BE0 PC0 0
DESCRIPTION
0 0 0 0 0 0 0
0 0 0 0 0 0 0
VLCD range L/H select Release read/modify/write RAM address at R:+0 , W:+1 Set display configuration Sets Y address of RAM 0Y9 Specify the initial display line to realize vertical scrolling Sets X address of RAM 0X101 Booster Efficiency Set # of booster voltage multiplication Release N-line inversion
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 X 0 0 0 X 0 0 WB3 0 WD3 0 LB3 0 LD3 0 DB3 0 DD3 0 BB3 0 DB3 0 1
0 0 S/W Internal register 0 initial 0 Frame freq. Adjust 0 and set FRC, PWM 0 Bias system 0 Set white mode and 0 st nd 1 /2 frame 0 Set white mode and 0 rd th 3 /4 frame 0 Set light gray mode 0 st nd 1 /2 frame 0 Set light gray mode 0 rd th 3 /4 frame 0 Set dark gray mode 0 st nd and 1 /2 frame 0 Set dark gray and 0 rd th 3 /4 frame 0 Set block mode and 0 st nd 1 /2 frame 0 Set block mode and 0 rd th 3 /4 frame 0 Reserved 0 Set VOP 0
0 1 Sets N-line inversion N1 N0 1 0 S/W Internal register initial 1 0 1 1 Adjust frame frequency and PWM1 PWM0 FRC and PWM mode BS1 BS0 Sets bias system (BSx) st nd 0 0 Set white mode and 1 /2 WA1 WA0 frame, set pulse width rd th 0 1 Set white mode and 3 /4 WC1 WC0 frame, set pulse width 1 0 Set light gray mode and st nd LA1 LA0 1 /2 frame set pulse width 1 1 Set light gray mode and rd th LC1 LC0 3 /4 frame, set pulse width 0 0 Set dark gray mode and st nd DA1 DA0 1 /2 frame, set pulse width 0 1 Set dark gray mode and rd th DC1 DC0 3 /4 frame, set pulse width st nd 1 0 Set black mode and 1 /2 BA1 BA0 Frame, set pulse width rd th 1 1 Set black mode and 3 /4 BC1 BC0 frame, set pulse width X X Do not use VOP1 VOP0 Write VOP to register
Ver 2.2
35/73
2008/01/04
ST7568
9. INSTRUCTION DESCRIPTION
H="0" or "1" Reset This instruction resets initial display line, column address, page address, and common output status select to their initial status.This instruction cannot initialize the LCD power supply, which is initialized by the RESB pin. Note: This instruction is invalid in IIC serial interface A0 0
WR(R/W)
0
D7 0
D6 0
D5 0
D4 0
D3 0
D2 0
D1 1
D0 1
Function Set A0 WR(R/W) 0 0 Flag
D7 0
D6 0
D5 1
D4 0
D3 0
D2 PD
D1 V
D0 H
PD
V
H
Description All LCD outputs at VSS (display off), bias generator and VLCD generator off, VLCD can be disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data can be written. PD=0:chip is active PD=1:chip is in power down mode When V = 0, the horizontal addressing is selected. The data is written into the DDRAM as shown in Fig13. When V = 1, the vertical addressing is selected. The data is written into the DDRAM as shown in Fig12 When H = 0 the commands `display control', `set Y address' and `set X address' can be performed, when H = 1 the others can be executed. The commands `write data' and `function set' can be executed in both cases. H=0:use basic instruction set H=1:use extended instruction set
Ext. display byte A0 WR(R/W) 0 0 Flag MX
D7 0
D6 0
D5 1
D4 0
D3 1
D2 MX
D1 MY
D0 PS
MY
PS
Description SEG bi-direction selection MY=0:normal direction (SEG0aSEG101) MY=1:reverse direction (SEG101aSEG0) COM bi-direction selection MY=0:normal direction (COM0aCOM67) MY=1:reverse direction (COM67aCOM0) Full display mode or partial screen mode selection PS=0:Full display mode with MUX 1:68 PS=1:Partial screen mode with MUX 1:8 or MUX 1:16
Window sizes for partial scan This instruction can select partial screen size, partial screen 8 rows when WS is low and partial screen 16 rows when WS is height. A0 0
WR(R/W)
0
D7 0
D6 0
D5 1
D4 1
D3 0
D2 0
D1 0
D0 WS
Ver 2.2
36/73
2008/01/04
ST7568
Display part This instruction can select partial screen modes A0 D7 D6 D5 WR(R/W) 0 0 0 0 1 Flag 0 0 0 0 1 1 1 1 Status 0 0 1 1 0 0 1 1 D4 1 D3 1 D2 DP2 D1 DP1 D0 DP0
DP2 DP1 DP0
0 1 0 1 0 1 0 1
Description RAM bank 0 to 1 (row0~row7) RAM bank 1 to 2 (row8~row15) RAM bank 2 to 3 (row16~row23) RAM bank 3 to 4 (row24~row31) RAM bank 4 to 5 (row32~row39) RAM bank 5 to 6 (row40~row47) RAM bank 6 to 7 (row48~row55) RAM bank 7 to 8 (row56~row63)
Read status byte Indicates the internal status of the ST7568 A0 0 Flag
WR(R/W)
1
D7 PD
D6 RST
D5 BUSY
D4 D
D3 E
D2 1
D1 0
D0 1
Description PD=0:chip is active PD PD=1:chip is in power down mode Indicates the initialization is in progress by RESET signal RST 0: chip is active,1:chip is being reset The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes LOW. BUSY 0:chip is active 1:chip is being busy D E The bits D and E select the display mode. 0 0 Display blank D,E 0 1 All display segments on 1 0 Normal mode 1 1 Inverse video mode D2~D0 ST7568 will return the fix data "101" as identification bit
Write data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 1
WR(R/W)
D7
D6
D5
0
D4 D3 Write data
D2
D1
D0
H="0" Set VLCD range VLCD range L/H select A0 0
WR(R/W)
0
D7 0
D6 0
D5 0
D4 0
D3 0
D2 1
D1 0
D0 PRS
PRS=0:VLCD programming range LOW PRS=1: VLCD programming range HIGH
Ver 2.2
37/73
2008/01/04
ST7568
END This command releases the read/modify/write mode, and returns the column and row address to the address it was at when the mode was entered. A0 D7 D6 D5 D4 D3 D2 D1 D0 WR(R/W) 0 0 0 0 0 0 0 1 1 0
Read/modify/write This command is used paired with the"END"command. Once this command has been input, the display data read command does not change the column and row address, but only the display data write command increments (+1) the address depend on V register setting. This mode is maintained until the END command is input. When the END command is input, the address returns to the address it was at when the read/modify/write command was entered. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when there is a blanking cursor. A0 D7 D6 D5 D4 D3 D2 D1 D0 WR(R/W) 0 0 0 0 0 0 0 1 1 1 * Even in read/modify/write mode, other commands aside from display data read/write commands can also be used.
Page address set
Column address set
Read-modify-write cycle
Dummy read
Data read
Data write
NO Changes Finished ? YES
END
Ver 2.2
38/73
2008/01/04
ST7568
Display Control This bits D and E selects the display mode. A0 0 Flag
WR(R/W)
0
D7 0
D6 0
D5 0
D4 0
D3 1
D2 D
D1 0
D0 E
D,E
Description D E The bits D and E select the display mode. 0 0 Display off 1 0 Normal display 0 1 All display segments on 1 1 Inverse video mode
Set Y address of RAM Y [3:0] defines the Y address vector address of the display RAM. A0 0
WR(R/W)
0
D7 0
D6 0
D5 0
D4 1
D3 Y3
D2 Y2
D1 Y1
D0 Y0
X/Y Address range Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 Start line set
CONTENT Page0 (display RAM) Page1 (display RAM) Page2 (display RAM) Page3 (display RAM) Page4 (display RAM) Page5 (display RAM) Page6 (display RAM) Page7 (display RAM) Page8 (display RAM) Page9 (display RAM)
ALLOWED X-RANGE 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101
Sets the line address of display RAM to determine the initial display line instruction. The RAM display data is displayed at the top of row (COM0) of LCD panel. A0 0 S5 0 0 0 0 : 1 1 1 1
WR(R/W)
0 S4 0 0 0 0 : 1 1 1 1
D7 0 S3 0 0 0 0 : 1 1 1 1
D6 1 S2 0 0 0 0 : 1 1 1 1
D5 S5 S1 0 0 1 1 : 0 0 1 1
D4 S4
D3 S3 S0 0 1 0 1 : 0 1 0 1
D2 S2
D1 S1 Line address 0 1 2 3 : 61 62 62 63
D0 S0
Ver 2.2
39/73
2008/01/04
ST7568
Set X address of RAM The X address points to the columns. The range of X is 0...101. A0 0 X6 0 0 0 0 : 1 1 1 1 H="1" Booster stages The ST7568 incorporates a software configurable voltage multiplier. After reset (RESB), the default voltage multiplier is set to 2*VDD2. Other voltage multiplier factors are set via the command "Set Booster stages". A0 0 Flag
WR(R/W) WR(R/W)
0 X5 0 0 0 0 : 1 1 1 1
D7 1 X4 0 0 0 0 : 0 0 0 0
D6 X6 X3 0 0 0 0 : 0 0 0 0
D5 X5 X2 0 0 1 1 : 0 0 1 1
D4 X4 X1
D3 X3 X0 0 1 0 1 : 0 1 0 1
D2 X2
D1 X1
D0 X0
1 1 0 0
Column address 0 1 2 3 : 98 99 100 101
0
D7 0
D6 0
D5 0
D4 0
D3 1
D2 0
D1 PC1
D0 PC0
Description PC1 PC0 0 0 2*voltage multiplier PC1, PC0 0 1 3*voltage multiplier 1 0 4*voltage multiplier 1 1 5*voltage multiplier Booster Efficiency The ST7568 incorporates software configurable Booster Efficiency Command. It could be used with Voltage multiplier to get the suitable Vout and Power consumption. Default setting is Level 2 A0 0 Flag
WR(R/W)
0 Description BE1 BE2 0 0 0 1 1 0 1 1
D7 0
D6 0
D5 0
D4 0
D3 1
D2 0
D1 BE1
D0 BE0
BE[1:0]
Booster Efficiency Level 1 Booster Efficiency Level 2 Booster Efficiency Level 3 Booster Efficiency Level 4
Release N-line inversion ST7568 returns to the frame inversion condition from the n-line inversion condition. A0 D7 D6 D5 D4 D3 D2 WR(R/W) 0 0 0 0 0 0 1 1
D1 0
D0 0
Set N-line inversion Sets the inverted line number within range of 3 to 33 to improve the display quality by controlling the phase of the internal LCD AC signal (M) by 2-byte instruction. Note: The N-line inversion mode will be disabled when partial display mode enter. After the partial display mode end, the N-line inversion mode will return as it was.
Ver 2.2
40/73
2008/01/04
ST7568
The 1 Instruction A0 WR(R/W) 0 0 The 2 Instruction A0 WR(R/W) 0 0 N4 0 0 0 0 : 1 1 1 N3 0 0 0 0 : 1 1 1
nd st
D7 0
D6 0
D5 0
D4 0
D3 1
D2 1
D1 0
D0 1
D7 X N2 0 0 0 0 : 1 1 1
D6 X N1 0 0 1 1 : 0 1 1
D5 X
D4 N4 N0 0 1 0 1 : 1 0 1
D3 N3
D2 N2
D1 N1
D0 N0
Selected n-line inversion 0-line inversion (frame inversion) 3-line inversion 4-line inversion 5-line inversion : 31-line inversion 32-line inversion 33-line inversion
S/W initial Internal register st The 1 Instruction D7 A0 WR(R/W) 0 0 0 nd The 2 Instruction A0 D7 WR(R/W) 0 0 0
D6 0 D6 0
D5 0 D5 0
D4 0 D4 1
D3 1 D3 0
D2 1 D2 0
D1 1 D1 1
D0 0 D0 0
Frame frequency adjusts and set FRC, PWM This command is designed for frame frequency adjustment, which can provide about 50% variation of frame frequency to avoid the interference with the frequency of daylight lamp in different countries and set by double command instruction. Select 3/4 FRC and 9/12/15 PWM and set by double command instruction. The 1 Instruction A0 WR(R/W) 0 0 The 2 Instruction A0 WR(R/W) 0 0
nd st
D7 0
D6 0
D5 0
D4 0
D3 1
D2 1
D1 1
D0 1
D7 X
D6 FR2
D5 FR1
D4 FR0
D3 X
D2 FRC
D1 PWM1
D0 PWM0
Frame frequency This command is used to set the frame frequency. FR2 FR1 FR0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Select 3/4 FRC FRC 0 1
FR frequency 77 Hz 5% 80 Hz 20% 85 Hz 20% 90 Hz 20% 100 Hz 20% 110 Hz 20% 120 Hz 20% 130 Hz 20%
Status of FRC 4 FRC 3 FRC
Ver 2.2
41/73
2008/01/04
ST7568
Select 9/12/15 PWM PWM1 0 0 1 1 PWM0 0 1 0 1 Status of PWM 9 PWM 9 PWM 12 PWM 15 PWM
System Bias Select LCD bias ratio of the voltage required for driving the LCD. A0 D7 D6 D5 D4 D3 WR(R/W) 0 0 0 0 0 1 0 BS2 0 0 0 0 1 1 1 1 BS1 0 0 1 1 0 0 1 1 BS0 0 1 0 1 0 1 0 1 Bias 11 10 9 8 7 6 5 4
D2 BS2
D1 BS1
D0 BS0
Recommend Duty 1:100 1:80 1:65/1:68 1:48 1/40:1/34 1/24 1:18/1:16 1:10/1:9/1:8
Set Gray Scale Mode & Register The first byte sets grayscale mode and the second byte updates the contents of gray scale register without issuing any other instruction. --Set Gray Scale Mode A0 D7 D6 D5 D4 D3 D2 D1 D0 WR(R/W) 0 0 0 0 0 1 1 GM2 GM1 GM0 GM2 0 0 0 0 1 1 1 1 GM1 0 0 1 1 0 0 1 1 GM0 0 1 0 1 0 1 0 1 Description st nd In case of setting whit mode and 1 / 2 frame rd th In case of setting whit mode and 3 / 4 frame st nd In case of setting light gray mode and 1 / 2 frame rd th In case of setting light gray mode and 3 / 4 frame st nd In case of setting dark gray mode and 1 / 2 frame rd th In case of setting dark gray mode and 3 / 4 frame st nd In case of setting block mode and 1 / 2 frame rd th In case of setting block mode and 3 / 4 frame
--Set Gray Scale Register GA3, GB3, GA2, GB2, GA1, GB1, GA0, GB0, Pulse width Pulse width Pulse width GC3, GD3 GC2, GD2 GC1, GD1 GC0, GD0 (9 PWM) (12 PWM) (15 PWM) 0 0 0 0 0/9 0/12 0/15 0 0 0 1 1/9 1/12 1/15 : : : : : : : 1 0 0 1 9/9 9/12 9/15 1 0 1 0 0/9 10/12 10/15 1 0 1 0 0/9 11/12 11/15 1 1 0 0 0/9 12/12 12/15 1 1 0 1 0/9 0/12 13/15 1 1 1 0 0/9 0/12 14/15 1 1 1 1 0/9 0/12 15/15 * GA3=WA3, LA3, DA3, BA3 GA2=WA2, LA2, DA2, BA2 GA1=WA1, LA1, DA1, BA1 GA0=WA0, LA0, DA0, BA0 GB3=WB3, LB3, DB3, BB3 GA2=WB2, LB2, DB2, BB2 GA1=WB1, LB1, DB1, BB1 GA0=WB0, LB0, DB0, BB0 GC3=WC3, LC3, DC3, BC3 GA2=WC2, LC2, DC2, BC2 GA1=WC1, LC1, DC1, BC1 GA0=WC0, LC0, DC0, BC0
Ver 2.2
42/73
2008/01/04
ST7568
GD3=WD3, LD3, DD3, BD3 GA2=WD2, LD2, DD2, BD2 GA1=WD1, LD1, DD1, BD1 GA0=WD0, LD0, DD0, BD0 LCD bias voltage Symbol Bias voltage for 1/8 bias Symbol Bias voltage for 1/8 bias VLCDIN VLCDIN V3 2/8 X VLCDIN V1 7/8 X VLCDIN V4 1/8 X VLCDIN V2 6/8 X VLCDIN VSS VSS Set VOP value: The operation voltage VLCD can be set by software. V0=( a + VOPxb )
(1)
The parameters are explained in table 4.The maximum voltage that can be generated is depending on the VDD voltage and the display load current. Two overlapping VLCD ranges are selectable via the command "Booster control". For the LOW (PS=0) range a=a1 and for the HIGH (PRS=1) range a=a2 with steps equal to "b" in both ranges. Note that the charge pump is turned off if VOP [6;0] and the bit PRS are all set to zero. o The V0 Temperature Gradient is -0.05%/ C Table 4 Typical values for parameter for the HV-Generator programming SYMBOL a1 a2 b VALUE 2.94(PRS=0) 6.75(PRS=1) 0.03 UNIT V V V
VL2
b
Charge pump off
a2 a1+b 01 02 03 04 05 06 ..... 7D 7E 7F 00 01 02 03 04 05 06 ..... 7D 7E 7F
00
LOW(PRS=0)
HIGH(PRS=1)
VOP [6:0](programmed) {00 hex... 7F hex} Fig.21 VOP programming of ST7568
Ver 2.2
43/73
2008/01/04
ST7568
Caution As the programming range for the internally generated VLCDIN allows values above the max allowed VLCDIN, the customer has to ensure while setting the VOP register that under all condition and including all tolerances the VLCD limit of max. 13V will never be exceeded. As VLCDIN increases with lower temperatures, care must be taken not to set a Vop generating a VLCDIN voltage that will exceed the maximum of 10.6V when operating at -30 .
10. COMMAND DESCRIPTION
Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits
User System Setup by External Pins
Start of Initialization
Power ON(VDD-VSS) Keeping the /RES Pin="L"
Waiting for Stabilizing the Power
/RES Pin="H" Wait 1 msec
Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial (2-byte) SET Booster 2X Delay 50ms SET VOP HV_gen stages SET N-LINE SET Booster 4X / 5X SET FRS , PWM GRAY SCALE SELECT Function set PD=0 , V=0 , H=0 Ext.display control Set window size for partial screen(if PS=1) Set Display part(if PS=1) Set VLCD Range(PRS) Display control D=1 E=0 (Normal) Set X , Y address Set start line address
End of Initialization
Figure 22. Initializing with the Built-in Power Supply Circuits
Ver 2.2
44/73
2008/01/04
ST7568
Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits
User System Setup by External Pins
Start of Initialization
Power ON(VDD-VSS) Keeping the /RES Pin="L"
Waiting for Stabilizing the Power
/RES Pin="H" wait 1 msec
Set Power Save
Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial SET N-LINE SET FRS , PWM GRAY SCALE SELECT Function set PD=0 , V=0 , H=0 Ext.display control Set window size for partial screen(if PS=1) Set Display part(if PS=1) Display control D=1 E=0 (Normal) Set X , Y address Set start line address
Waiting for Stabilizing the LCD Power Levels
End of Initialization
Fig 23. Initializing without Built-in Power Supply Circuits
Ver 2.2
45/73
2008/01/04
ST7568
Referential Instruction Setup Flow: Data Displaying
End of Initialization
Display Data RAM Addressing by Instruction [Initial Display Line] [Set Page Address] [Set Column Address]
Write Display Data by Instruction [Display Data Write]
Turn Display ON/OFF Instruction [Display ON/OFF]
End of Data Display
Figure 24.Data Displaying
Referential Instruction Setup Flow: Power OFF
Optional Status
Set Power Save by Instruction
Power OFF(VDD-VSS)
End of Power OFF
Figure 25. Power OFF
Ver 2.2
46/73
2008/01/04
ST7568
11. LIMITING VALUES
In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Power Supply Voltage Power supply voltage Power supply voltage Power supply voltage Input voltage Output voltage Operating temperature Storage temperature Symbol VDD/VDD2 V0 VLCDIN V1, V2, V3, V4 VIN VO TOPR TSTR Conditions -0.3 ~ +3.6 3.0 ~ 12 -0.3 ~ +13.5 0.3 to VLCDIN -0.5 to VDD+0.5 -0.5 to VDD+0.5 -30 to +85 -65 to +150 V V V V V V C C Unit
VLCD
V1 to V4
VDD
VDD
VSS System (MPU) side
VSS ST7568 chip side
VSS
Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that Vout V0 V1 V2 V3 V4 Vss
Ver 2.2
47/73
2008/01/04
ST7568
12. HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS devices").
13. DC CHARACTERISTICS
VSS = 0 V; Tamb = -30 to +85; unless otherwise specified. Rating Item Operating Voltage (1) Operating Voltage (2) High-level Input Voltage Low-level Input Voltage High-level Output Voltage Low-level Output Voltage Input leakage current Output leakage current Liquid Crystal Driver ON RON Resistance Internal Oscillator Oscillator External Input Frequency Frame frequency fFRAME fCL 1/68 duty 15 PWM -- 77 80.3 Hz fOSC Ta = 25C Ta=25C VLCDIN = 8V Symbol VDD VDD2 (Relative to VSS) VIHC VILC VOHC VOLC ILI ILO VIN = VDD or VSS VIN = VDD or VSS VLCDIN = 13V Condition Min. 1.8 2.4 0.7 x VDD VSS 0.7 x VDD VSS -1.0 -3.0 -- -- -- -- Typ. -- -- -- -- -- -- -- -- 2.0 3.2 80 80 Max. 3.3 3.3 VDD 0.3 x VDD VDD 0.3 x VDD 1.0 3.0 3.5 K 5.4 84 84 kHz kHz COMn *6 *7 OSC V V V V V V A A Units Pin Vss*1 VSS2 *2 *2 *3 *3 *4 *5 SEGn Applicable
Rating Item Supply Step-up output Internal Power VLCDOUT voltage Circuit Voltage regulator Circuit Operating Voltage VLCDIN (Relative To VSS) -- -- 13.5 V VLCDIN (Relative To VSS) Symbol Condition Min. -- Typ. -- Max. 13.5 V VLCDOUT Units Applicable Pin
Ver 2.2
48/73
2008/01/04
ST7568
Bare Dice Consumption Current : During Display, with the Internal Power Supply, Current consumed by total ICs when an external power supply(VDD,VDD2) is used . Rating Test pattern Symbol Condition Min. VDD,VDD2 = 3.0 V, Display Pattern ISS SNOW 4X Booster 1/9 Bias VDD=3.0V Power Down ISS Ta = 25C -- 0.01 2 A V0 - VSS = 9.0 V -- 300 400 A *8 Typ. Max. Units Notes
Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load. 2. Internal clock 3. Power-down mode. During power down all static currents are switched off. 4. If external VLCDIN, the display load current is not transmitted to I DD. 5. VOUT external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT (no connect)
References for items market with *
*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *3 The D0 to D7, and OSC terminals. *4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /I (Where I is the current that flows when 0.1 V is applied while the power supply is ON.) *7 The relationship between the oscillator frequency and the frame rate frequency. *8,9It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.
Ver 2.2
49/73
2008/01/04
ST7568
14. TIMING CHARACTERISTICS
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)
A0
tAW8
tAH8
/CS tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 D0 to D7 (Write) tDH8
tACC8 D0 to D7 (Read)
tOH8
Figure 26.
(VDD = 3.3V , Ta =-30~85C) Rating Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Data hold time D0 to D7 READ access time READ Output disable time tACC8 tOH8 CL = 100 pF CL = 100 pF tCCHR tDS8 tDH8 80 40 10 -- 5 -- -- 70 50 tCCHW tCCLR 80 140 A0 Signal Symbol tAH8 tAW8 tCYC8 tCCLW Condition Min. 0 0 240 80 Max. -- -- -- -- -- -- ns Units
Ver 2.2
50/73
2008/01/04
ST7568
(VDD = 2.7 V , Ta = -30~85C ) Rating Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Data hold time D0 to D7 READ access time READ Output disable time tACC8 tOH8 CL = 100 pF CL = 100 pF tCCHR tDS8 tDH8 180 40 15 -- 10 tCCHW tCCLR 180 220 A0 Signal Symbol tAH8 tAW8 tCYC8 tCCLW Condition Min. 0 0 400 220 Max. -- -- -- -- -- -- -- -- -- 140 100 ns Units
(VDD = 1.8V , Ta =-30~85C ) Rating Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Data hold time D0 to D7 READ access time READ Output disable time tACC8 tOH8 CL = 100 pF CL = 100 pF tCCHR tDS8 tDH8 280 80 30 -- 10 -- -- 240 200 tCCHW tCCLR 280 360 A0 Signal Symbol tAH8 tAW8 tCYC8 tCCLW Condition Min. 0 0 640 360 Max. -- -- -- -- -- -- ns Units
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) (tCYC8 - tCCLW - tCCHW) for (tr + tf) (tCYC8 - tCCLR - tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.
Ver 2.2
51/73
2008/01/04
ST7568
System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)
A0 R/W tAW6 CS1 (CS2="1") tCYC6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 D0 to D7 (Write) tDH6 tAH6
tACC6 D0 to D7 (Read)
tOH6
Figure 27.
(VDD = 3.3 V , Ta =-30~85C ) Rating Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Data hold time D0 to D7 READ access time READ Output disable time tACC6 tOH6 CL = 100 pF CL = 100 pF tEWHR tDS6 tDH6 140 40 10 -- 5 -- -- 70 50 tEWHW tEWLR 80 80 A0 Signal Symbol tAH6 tAW6 tCYC6 tEWLW Condition Min. 0 0 240 80 Max. -- -- -- -- -- -- ns Units
Ver 2.2
52/73
2008/01/04
ST7568
(VDD = 2.7V , Ta =-30~85C ) Rating Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Data hold time D0 to D7 READ access time READ Output disable time tACC6 tOH6 CL = 100 pF CL = 100 pF tEWHR tDS6 tDH6 180 40 15 -- 10 tEWHW tEWLR 180 220 A0 Signal Symbol tAH6 tAW6 tCYC6 tEWLW Condition Min. 0 0 400 220 Max. -- -- -- -- -- -- -- -- -- 140 100
Units
ns
(VDD =1.8V , Ta =-30~85C ) Rating Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Data hold time D0 to D7 READ access time READ Output disable time tACC6 tOH6 CL = 100 pF CL = 100 pF tEWHR tDS6 tDH6 280 80 30 -- 10 tEWHW tEWLR 280 360 A0 Signal Symbol tAH6 tAW6 tCYC6 tEWLW Condition Min. 0 0 640 360 Max. -- -- -- -- -- -- -- -- -- 240 200 ns Units
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) (tCYC6 - tEWLW - tEWHW) for (tr + tf) (tCYC6 - tEWLR - tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.
Ver 2.2
53/73
2008/01/04
ST7568
SERIAL INTERFACE(4-Line Interface)
tCCSS /CS1 (CS2="1") tSAS A0 tSCYC tSLW SCL tSHW tf tSDS SI tr tSDH tSAH tCSH
Fig 28. (VDD=3.3V,Ta=-30~85) Rating Item Serial Clock Period SCL "H" pulse width SCL "L" pulse width Address setup time A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time tCSH 140 (VDD=2.7V,Ta=-30~85) Rating Item Serial Clock Period SCL "H" pulse width SCL "L" pulse width Address setup time A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time tCSH 160 tSDH tCSS 20 30 tSAH tSDS 20 30 SCL Signal Symbol tSCYC tSHW tSLW tSAS Condition Min. 100 50 50 30 Max. -- -- -- -- -- -- -- -- -- ns Units tSDH tCSS 10 20 tSAH tSDS 10 20 SCL Signal Symbol tSCYC tSHW tSLW tSAS Condition Min. 50 25 25 20 Max. -- -- -- -- -- -- -- -- -- ns Units
Ver 2.2
54/73
2008/01/04
ST7568
(VDD=1.8V,Ta=-30~85) Rating Item Serial Clock Period SCL "H" pulse width SCL "L" pulse width Address setup time A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time tCSH 200 *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. tSDH tCSS 30 40 tSAH tSDS 30 60 SCL Signal Symbol tSCYC tSHW tSLW tSAS Condition Min. 200 80 80 60 Max. -- -- -- -- -- -- -- -- -- ns Units
Ver 2.2
55/73
2008/01/04
ST7568
15. RESET TIMING
tRW /RES
tR Internal status During reset Reset complete
Fig 29. (VDD = 3.3V , Ta = -30 to 85C ) Rating Item Reset time Reset "L" pulse width RESB Signal Symbol tR tRW Condition Min. -- 1 Typ. -- -- Max. 1 -- us us Units
(VDD = 2.7V , Ta = -30 to 85C ) Rating Item Reset time Reset "L" pulse width RESB Signal Symbol tR tRW Condition Min. -- 1.5 Typ. -- -- Max. 1.5 -- us us Units
(VDD = 1.8V , Ta = -30 to 85C ) Rating Item Reset time Reset "L" pulse width RESB Signal Symbol tR tRW Condition Min. -- 2.0 Typ. -- -- Max. 2.0 -- us us Units
Ver 2.2
56/73
2008/01/04
ST7568
16. APPLICATION INFORMATION
Table 5 programming example for ST7568 SETP 1 2 Start A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 0 0 0 SERIAL BUS BYTE DISPLAY OPERATION CSB IS going low. Function Set. PD=0,V=0,select extended Instruction set(H=0 mode) 3 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 4 1 0 0 1 0 0 0 0 Set VOP VOP is set to a+16*b[V] Function Set. PD=0,V=0,select normal Instruction set(H=0 mode). 5 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 6 0 0 0 0 0 1 0 0 Display control. Set normal mode(D=1,E=0) Data Write. Y,X are initialized to 0 by default, so they aren't set here... 7 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 0 0 0
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0
8
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
Data Write.
9
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
Data Write.
10
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0
Data Write.
11
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Data Write.
Ver 2.2
57/73
2008/01/04
ST7568
12 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 Data Write.
13
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Data Write.
14
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
Data Write.
15
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 1 1 0 1
Display Control. Set inverse video mode (D=1,E=1).
16
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 0 0 0 0 0
Set X address of RAM. Set address to "0000000".
17
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Data Write.
Table 6 Display examples for ST7568 depending on PS,MX,MY and DP[2:0] bit setting Example WS PS DP2 DP1 DP0 MX MY DISPLAY
1
0
0
X
X
X
0
0
2
0
0
X
X
X
1
0
Ver 2.2
58/73
2008/01/04
ST7568
3 0 0 X X X 0 1
4
0
0
X
X
X
1
1
5
0
1
0
0
0
0
0
6
0
1
0
0
0
1
0
7
0
1
0
0
0
0
1
8
0
1
0
0
0
1
1
9
0
1
0
0
1
0
0
10
0
1
0
0
1
1
0
11
0
1
0
0
1
0
1
Ver 2.2
59/73
2008/01/04
ST7568
12 0 1 0 0 1 1 1
13
1
1
0
0
0
0
0
14
1
1
0
0
0
1
0
15
1
1
0
0
0
0
1
16
1
1
0
0
0
1
1
17
1
1
0
0
1
0
0
18
1
1
0
0
1
1
0
19
1
1
0
0
1
0
1
20
1
1
0
0
1
1
1
Note: When you use 68 com mode and will use partial display to display , then you can control 0~64com to display , not control 65~67 com to display.
Ver 2.2
60/73
2008/01/04
ST7568
The pinning of the ST7568 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 65x102 pixels.
Display 102X 68 pixels
34
102
34
ST7568 VDD2 VDD VSS1 VSS2
CLVCD I/O VDD CVDD VSS
8
Fig 30. Application diagram: internal charge pump is used and single V DD
Display 102 X 68 pixels
34
102
VLCDOUT VLCDIN 34
CLVCD
ST7568 VDD2 VDD VSS1 VSS2
VSS
8
I/O VDD2
VDD CVDD CVDD2
Fig 31. Application diagram: Internal charge pump is used and two separate VDD(VDD2)
Ver 2.2
61/73
VLCDOUT VLCDIN
2008/01/04
ST7568
Display 102 X 68 pixels
34
102
34
ST7568 VDD2 VDD VSS1 VSS2
8
VL2 I/O VDD2 CVDD VSS
Fig 32. application diagram : External high voltage generation is used
The required minimum value for the external capacitors in an application with the ST7568 are: CVLCD = min. 100nF CVDD,2= min. 1.0 F
Higher capacitor values are recommended for ripple reduction.
17.THE MPU INTERFACE (REFERENCE EXAMPLES)
The ST7568 Series can be connected to either60X86 Series MPUs or to 6800Swries MPUs. Moreover, using the serial interface it is possible to operate the ST7568 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7568 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080 Series MPUs
VDD VCC A0 A1 to A7 IORQ DO to D7 RD WR RES RESET Decoder A0 /CS D0 to D7 E (/RD) R/W (/WR) /RES VSS VSS ST7568 PS VDD IMS
Ver 2.2
MPU
GND
62/73
VLCDOUT VLCDIN
2008/01/04
ST7568
(2) 6800 Series MPUs
VDD VCC A0 A1 to A7 IORQ DO to D7 RD WR RES RESET Decoder A0 /CS D0 to D7 /RD (E) /WR (R/W) /RES VSS VSS ST7568 PS VDD IMS
(3) Using the Serial Interface (4-line interface)
MPU GND
VDD VCC A0 A1 to A7 MPU Decoder A0 /CS VDD IMS ST7568 PS VSS VSS
Port 1 Port 2 RES GND RESET
SI SCL /RES
Ver 2.2
63/73
2008/01/04
ST7568
ST7568 Application Note << index >>
Hardware Option set up & interfaces
Figure - 1: 68-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC Figure - 2: 65-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC Figure - 3: 68-duty/parallel-8080/VLCDIN-internalVDD2=VDD/internal-OSC Figure - 4: 68-duty/serial-4Line/VLCDIN-internal/VDD2=VDD/internal-OSC Figure - 5: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/internal-OSC Figure - 6: 68-duty/parallel-6800 /VLCDIN-External/VDD2=Independent/internal-OSC Figure - 7: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/External-OSC Figure - 8: 68-duty/IIC serial /VLCDIN-internal/VDD2=VDD/internal-OSC
Ver 2.2
64/73
2008/01/04
ST7568
Figure - 1: 68-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC
Ver 2.2
65/73
2008/01/04
ST7568
Figure - 2: 65-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC
Ver 2.2
66/73
2008/01/04
ST7568
Figure - 3: 68-duty/parallel-8080/VLCDIN-internalVDD2=VDD/internal-OSC
Ver 2.2
67/73
2008/01/04
ST7568
Figure - 4: 68-duty/serial-4Line/VLCDIN-internal/VDD2=VDD/internal-OSC
Ver 2.2
68/73
2008/01/04
ST7568
Figure - 5: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/internal-OSC
Ver 2.2
69/73
2008/01/04
ST7568
Figure - 6: 68-duty/parallel-6800 /VLCDIN-External/VDD2=Independent/internal-OSC
Ver 2.2
70/73
2008/01/04
ST7568
Figure - 7: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/External-OSC
Ver 2.2
71/73
2008/01/04
ST7568
Figure - 8: 68-duty/IIC serial /VLCDIN-internal/VDD2=VDD/internal-OSC
Ver 2.2
72/73
2008/01/04
ST7568
Revision
Version 0.X - Preliminary Version 1.0 - 2002/11/15 version 1.0 Version 1.0a - 2002/12/05 add application Note Version 1.0b - 2003/01/02 Character Correction Version 1.1 - 2003/04/11 modify application Note Version 2.0 --- 2003/05/10 add ST7568i Version 2.1 --- 2005/10/05 Gold Bump Height: 17um; voltage and temperature range. Version 2.1a - 2007/07/24 Add ITO resistance; Fix serial application mistake: D7=SCL Version 2.2 - 2008/01/04 Recommend VDD2 minimal value to be 2.4V.
Ver 2.2
73/73
2008/01/04


▲Up To Search▲   

 
Price & Availability of ST7568

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X